
Dynamic Domains in Data Production Planning

Keith Golden Wanlin Pang∗

NASA Ames Research Center
Moffett Field, CA 94035

{kgolden, wpang}@email.arc.nasa.gov

Abstract

This paper discusses a planner-based approach to
automating data production tasks, such as pro-
ducing fire forecasts from satellite imagery and
weather station data. Since the set of available data
products is large, dynamic and mostly unknown,
planning techniques developed for closed worlds
are unsuitable. We discuss a number of techniques
we have developed to cope with data production do-
mains, including a novel constraint propagation al-
gorithm based on planning graphs and a constraint-
based approach to interleaved planning, sensing
and execution.

1 Introduction
Petabytes of remote sensing data are now available from
Earth-observing satellites to help measure, understand and
forecast changes in the Earth system, but using these data ef-
fectively can be surprisingly hard. The volume and variety of
data files and formats are daunting. Simple data management
activities, such as locating and transferring files, changing
file formats, gridding point data, and scaling and reproject-
ing gridded data, can consume far more personnel time and
resources than the actual data analysis. We address this prob-
lem by developing a planner-based agent for data production,
called IMAGEbot[Goldenet al., 2003], that takes data prod-
uct requests as high-level goals and executes the commands
needed to produce the requested data products.

The data production problem consists of converting an ini-
tial set of low-level data products into higher-level data prod-
ucts that can be used for science or decision support. The data
products we are concerned with are geospatial data measuring
specificvariablesof the Earth system, such as precipitation,
vegetation productivity and fire risk, but our approach is also
applicable to other types of data. Higher-level data products
may be transformed versions of lower-level data products,
or they may be entirely new products providing estimates or
predictions of unknown Earth system variables, such as soil
moisture, based on known variables, such as precipitation.
These variables are estimated by running one or more com-
putationalmodels, such as simulation codes. The models can

∗QSS Group Inc

be precisely characterized in terms of their input and output
requirements, which makes them straightforward to represent
in an AI planning system. However, there are significant dif-
ferences between the data production problem and more tra-
ditional planning domains, calling for different techniques.

Notable features of data processing domains include large
dynamic universes, incomplete information and uncertainty.
There are petabytes of data available, with new data becom-
ing available all the time, and the agent itself produces many
new data products in the course of fulfilling the user’s goal—
data products that could be used to fulfill subsequent goals.
There is also considerable uncertainty — uncertainty of the
time that particular data will be available, or whether the data
will arrive at all, uncertainty in the quality of data, even un-
certainty as to whether a given processing algorithm will suc-
ceed. To cope with this uncertainty, the agent may need to
poll for data availability or try alternative courses of action if
the one it is pursuing seems unpromising.

We have developed a planner-based agent, called IMAGE-
bot, to automate data production. The data production prob-
lem may be viewed as a planning problem in which the initial
state describes the current set of available data products, and
whose goal state describes the properties of the desired high-
level data products. Planner operators correspond to data
transformation and generation tools. IMAGEbot takes data
product requests as high-level goals and executes the com-
mands needed to produce the requested data products.

We adopt a planning approach somewhat similar to Graph-
plan, consisting of a Graphplan-style reachability analysis
and a constraint-based search. However, the large universe
of the data production problem makes the grounded planning
graph of Graphplan inapplicable; instead, we choose a lifted
representation where actions and plans contain variables. Be-
cause of the lifted representation, and the uncertain and dy-
namic nature of the data production problem, the reachability
analysis and search cannot be separated; instead, IMAGEbot
is interleaves planning, constraint reasoning and execution.

In this paper, we report on our work on IMAGEbot, with
a focus on the constraint reasoning that underlies planning,
sensing and execution. Section 2 gives an overview of the
IMAGEbot system architecture and high-level planning ap-
proach; Section 3 discusses our constraint-based approach to
sensing; Section 4 discusses a novel constraint propagation
algorithm based on the planning graph. Section 5 discusses



Expert UI

NLI

Web
Interface

DPADL

Parser

Database

Task
Manager

Planner
(Doppler)

JNET

Executive

Web
Service

TOPS
Database

RMI
Interface

TOPS
Models

User
Interface IMAGEbot

JDAF

Figure 1: The architecture of IMAGEbot

interleaved planning and execution.

2 IMAGEbot Overview

2.1 System Architecture

The architecture of the IMAGEbot agent is depicted in Figure
1. The main components are:

JDAF: TheJavaDistributedApplicationFramework com-
prises execution environment for IMAGEbot; it provides the
agent with a common API for data-processing programs and
ecological forecasting models.

DPADL: The Data Processing Action Description
Language[Golden, 2002] is used to provide action descrip-
tions of data-processing programs and available data sources.
Goals, in the forms of data product requests, can also be de-
scribed in DPADL. To support both fine-grained and flexible
sensing, DPADL allows constraints to make calls calls to the
underlying runtime environment (Section 3).

DoPPLER: TheDataProcessingPlanner accepts goals in
the form of data descriptions and synthesizes and executes
data-flow programs. It reduces the planning problem to a CSP
whose solution provides a solution to the original planning
problem.

JNET: Java ConstraintNetwork is a constraint represen-
tation and reasoning framework that provides the agent with
constraint propagation and search capabilities.

The architecture provides a planning framework that inter-
leaves planning with constraint reasoning and plan execution.

2.2 Planning Approach

Planning in IMAGEbot is a two-stage process. The first stage
consists of a Graphplan-style reachability analysis[Blum &
Furst, 1997] to derive heuristic distance estimates for the sec-
ond stage, a constraint-based search. These stages are not en-
tirely separate, however; constraint propagation occurs even
in the the graph-construction stage, and the graph is refined
during the constraint-search phase.

Lifted planning graphs
Planning domains are specified in DPADL. From the plan-
ning problem specification, the planner incrementally con-
structs a directed graph, similar to a planning graph[Blum
& Furst, 1997], but using a lifted representation (i.e., contain-
ing variables). This graph is used to obtain distance estimates
for heuristic search, and is also the basis for the construction
of the CSP. Arcs in the graph are analogous to causal links
[Penberthy & Weld, 1992]. A causal link is triple〈αs, p, αp〉,

recording the decision to use actionαs to support precondi-
tion p of actionαp. However, instead of recording a commit-
ment of support, it indicates thepossibilitythatαs supportsp.
The lifted graph contains multiple ways of supportingp; the
choice of the actual supporter becomes a constraint satisfac-
tion problem. We add an extra term to the arc for bookkeep-
ing purposes – the condition,γαs

p , needed in order forαs to
achievep. A link then becomes

〈
αs, γ

αs
p , p, αp

〉
.

Given an unsupported preconditionp of actionαp, our first
task is to identify all the actions that could supportp. Be-
cause the universe is large and dynamic, identifying all possi-
ble ground actions that could supportp would be impractical,
so instead we use a lifted representation, identifying all action
schemasthat could provide support. Given an action schema
α, we determine whether it supportsp by regressingp through
α. The result of regression is the formulaγαs

p . If γαs
p =⊥,

thenα does not supportp. Initial graph construction termi-
nates when all preconditions have support or (more likely) a
potential loop is detected.

From planning to constraints
After the graph is constructed, heuristic distance estimates
for guiding the search are computed, and a constraint prob-
lem representing the search space is incrementally built. It
is incremental because the planning graph comprises a com-
pact representation of the search space, in which each action
node can represent multiple concrete actions in the final plan.
Since the number of possible actions can be large, even infi-
nite, we cannot simply generate all of them at once but do so
lazily during search. This is handled using a dynamic CSP
(DCSP), in which new variables and constraints can be added
for each new action and causal link in the plan.

The CSP contains: 1) boolean variables for all arcs, nodes
and conditions; 2) variables for all parameters, input and out-
put variables and function values; 3) for every condition in
the graph, a constraint specifying when that condition holds
(for conditions supported by arcs, this is just the XOR of
the arc variables); 4) for conjunctive and disjunctive expres-
sions, the constraint is the respective conjunction or disjunc-
tion of the boolean variables corresponding to appropriate
sub-expressions; 5) for every arc in the graph, constraints
specifying the conditions under which the supported fluents
will be achieved (i.e.,γα

p ⇒ p, whereγα
p is the precondition

of α needed to achievep) ; 6) user-specified constraints; and
7) constraints representing structured objects.

Constraint-based search
After converting the planning problem to a CSP, the planner
searches the CSP for a solution. At a high level, the plan-
ner, guided by heuristic distance estimates extracted from the
planning graph, selects subgoals to achieve and actions to
achieve them (Algorithm 2). After the subgoal and action
selection, the planner (or more accurately, the CSP solver)
finds values for variables representing planner action param-
eters. This is necessary to make actions executable. During
the search, propagation is performed whenever a value is as-
signed to a variable. The search is an iterative process involv-
ing possible backtracks; that is, if there are no valid parame-
ters for a chosen action, the planner has to search for another
plan; if it is impossible to extract a plan from the current plan



graph, the planning graph is extended or search fails.

3 Constraint-based sensing
In order to find out what data products relevant to the task at
hand are available, the agent needs to sense its environment.
One way of doing this is to introducesensing actions[Golden
& Weld, 1996], which the agent can execute in order to obtain
information. This approach has the advantage that it can be
used to capture sensing actions that have preconditions, but it
also requires the plan to be at least partially executed before
the information can be obtained. We follow an alternative ap-
proach of representing low-cost precondition-free sensors us-
ing procedural constraints. That is, we can implement con-
straints as procedures that can perform database queries or
invoke other information-gathering operations in the course
of identifying the domain of values a given variable can have.
This constraint-based sensing approach is much more flexible
than the sensing-action approach, as the order of sensing op-
erations is based on constraint propagation, and information
dependencies are inherently multi-directional. For example,
suppose we have a set of satellite images, each of which cor-
responds to a given region of the Earth’s surface for a given
day. If we have a specific satellite image, we may invoke
methods to determine the region and day for that image. On
the other hand, if we know we need an image corresponding
to a given region and day, we may query a database to find
out what images are available for the time and place in ques-
tion. The specific set of operations performed depends on
which variables are bound (or appropriately restricted),i.e.,
what information is “known” to the constraint solver. Invok-
ing a sensing operation may trigger further sensing through
constraint propagation. For example, suppose we are inter-
ested finding a high resolution satellite image of western Ore-
gon for a day in June that had no rainfall. We can perform
a database query to find out what images are available over
western Oregon for June. Once the images are known, we can
query to find the resolution of each one, eliminating from con-
sideration those of insufficient resolution. We can then query
to determine the day that each image was captured, then do
another query to determine the precipitation for that day. Fi-
nally, we remove from consideration all images for days that
had non-zero precipitation. The order of sensing operations
depends on what information is “known” and what informa-
tion is needed.

We can also represent more traditional sensing actions, us-
ing actions that produce new objects (data files), which con-
tain information. Acquiring these objects can, in turn, trig-
ger more constraint propagation, resulting in more implicit
sensing. For example, a data-acquisition action may obtain
a set of satellite images from a remote location. Once these
images are available, additional operations can be performed
to obtain information about the images, such as data qual-
ity. These additional operations can be implemented as con-
straints rather than actions, which removes them from the set
of deliberate decisions that the planner needs to make.

4 Action-based Constraint Propagation
As we have discussed, data production problems, due to their
large, uncertain and dynamic universes, are not suitable for

a grounded representation. The lifted planning graph is a
much more concise representation than the grounded plan-
ning graph, but it is potentially less informative, which makes
conventional constraint propagation and search less effective.
The CSP derived from the lifted planning graph contains vari-
ables with infinite domains[Golden & Frank, 2002], so there
is no way to enumerate solutions by search alone, yet the tra-
ditional constraint propagation that establishes certain levels
of consistency does not work well either. For example, we
have a constraint propagator in JNET that enforces a partial1

generalized arc-consistency(GAC) [Bessiere & Ch, 1997;
Katsirelos & Bacchus, 2001]. The definition of GAC is built
upon the variables and their values; namely, a CSP is GAC if
all its variables are GAC; a variable is GAC is all its values
are GAC; a valuev of a variablex is GAC if it has support
from other variables in every constraint onx. Establishing
consistency requires evaluating every value to see if it satis-
fies certain constraints, which is not possible in general for
infinite variable domains. A combination of propagation and
search will eventually find a solution, but propagation does
not become informative until late in the search .

We have developed a new constraint propagation algorithm
that propagates changes among the actions in the planning
graph, which yields much more information, even before
search begins. It not only restricts the domains of variables
by eliminating inconsistent values, but it also may add values
to the variable domains when new information is available
(e.g., a new object is created). In this section, we first de-
scribe the propagation algorithm, then illustrate how it works
with an example, and discuss its role in the planning search
and constraint search.

4.1 Algorithm
Formally, a data-processing action schema can be seen as a
tuple〈I,O,P,Π, E , χ〉, whereI,O,P are theinputvariables,
output variables andparametersrespectively. The parame-
ters are unknowns that may appear in constraints on either or
both input and output.Π is theprecondition, E is effectsand
χ is a procedure for executing the action that may reference
any variable inI ∪ P and must set every variable inO. A
lifted planning graph can be seen as a partially ordered set
of actions(A,≺), wherea ≺ b iff actiona supportsb or a
supportsc andc ≺ b. In the CSP derived from the lifted plan-
ning graph, we have constraints specifying the relationships
among variables inside an action and constraints specifying
relationships of two actions if one supports another. For an in-
dividual action, if something changes, for example, if a value
is assigned to a variable in the action input due to search , the
change to this variable can be propagated to other variables in
the output, which may change their domains. For two actions
a andb, wherea supportsb, changes in the input ofb can be
propagated to the output ofa; similarly, changes in the out-
put of a can be propagated to the input ofb. The idea of this
propagation is outlined in Algorithm 1.

In Algorithm 1, functionenforce (P,Ca) enforces ev-
ery constraintc ∈ Ca associated with actiona. It restricts

1We call it partial GAC for two reasons: 1) not every constraint
procedure enforces the GAC; and 2) not every constraint is executed
in the propagation.



Algorithm 1 Action Constraint Propagation
Given a lifted plan graphG. Let A be the set of actions inG,
let P = (X, D, C) be the CSP derived from the lifted plan
graph, and letA′ be a subset of actions to be propagated:

propagate(G, A, P,A′)

1. while (A′ 6= ∅) do

(a) let a← an action removed from A′

(b) let Ca ← constraints relevant to a

(c) < d(I(a)), d(O(a)) >← enforce (P,Ca)
(d) for (∀i ∈ I(a) s.t.d(i) = ∅)

remove supporting link to i

(e) for (∀o ∈ O(a) s.t.d(o) = ∅)
remove supporting link from o

(f) for (∀i ∈ I(a) s.t.d(i) changed)
i. for (∀b ∈ A s.t. b supports a)

if (revise (P,O(b), i)) A′ ← A′∪ { b}

(g) for (∀o ∈ O(a) s.t.d(o) changed )
i. for (∀b ∈ A s.t.a supports b)

if (revise (P, I(b), o)) A′ ← A′∪ { b}

2. return

domains of variables inc by eliminating inconsistent values.
Functionrevise (P,O(b), i) (or revise (P, I(b), o) ) com-
putes the domains of variables inO(b) (or I(b) ), wherei is
an input (oro an output) of actiona and actionb supports (or
is supported by)a. The functionrevise may remove in-
consistent values or add newly discovered values depending
on the planning graph structure. It returns true if any variable
domain has been revised, in which case the actionb is added
to A′, waiting to be propagated.

In addition to removing inconsistent values or discovering
new values for variables in an action, this propagation also
removes certain supporting links if it identifies inconsistency.
If all links from an actiona supporting other actions are re-
moved, the actiona is useless in the planning graph so it can
be safely removed. If all links to an input of an actiona
are removed, this action cannot be executed because one of
its inputs does not have support. The planner either has to
find other support for this action (e.g., expanding the plan-
ning graph by inserting more actions) or remove this action
from the planning graph.

4.2 Example

For illustration, we consider a simplified version of construct-
ing a mosaic. Many satellites continuously image whatever
portion of the Earth they pass over, like giant hand-held scan-
ners. For convenience, the resultingswathdata is usually re-
projected into onto a 2Dmapand chopped up intotiles, cor-
responding to a regular grid drawn over the map. To obtain
the data pertaining to a particular region of the Earth, we first
identify and obtain the tiles that cover that region and then
combine them into a single image, known as a mosaic, and
crop away the pixels outside the region of interest.

These tiles are represented in the planner as first-class ob-
jects. The attributes of a tile describe, among other things,

comp2h getTilecomp2v

input &
preconditions

output &
effects

Figure 2: The planner actions: the dots inside actions are
inputs and outputs. Parameters are not shown.

the physical measurement the data in the tile represent, the
position of the tile on the grid, the projection used to flatten
the globe, and the region of the Earth covered by the pixels
in the image. For simplicity, we assume in this example that
tiles have only two attributes: theregion a tile covers and
thecloudinesswhen the image was taken. A simplified task
becomes to take some tiles from thousands of available tiles
and compose them to create a mosaic that covers a specified
region without too much cloud cover.

Specifically, aregion is a pair of points〈ul, lr〉 whereul
is the upper-left corner andlr the lower-right corner. A point
is a pair of coordinates(x, y). Normally x andy would be
longitude and latitude, but as a further simplification, we will
assume bothx andy are non-negative integers. The cloudi-
ness is represented by a real number from0 to 1, where0
is clear sky and1 is totally obscured. Further, we assume
there are only three actions the planner may take: compose
two tiles horizontally (comp2h) or vertically (comp2v), or get
a tile with its ul point as a parameter (getTile). A real mo-
saic command is not limited to combining two tiles. Figure 2
shows action preconditions and effects with respect to the re-
gion. In addition, the effect of composing two images is that
their combined cloudiness is treated as the maximum of the
cloudiness of the input tiles.

A problem instance we consider here consists of some
small tiles, such as〈(0, 0), (1, 2)〉, or〈(2, 3), (3, 5)〉. The goal
is to compose a mosaic for the region〈(0, 0), (3, 2)〉 with no
more than 15% cloud cover. This mosaic is composed of tiles
B1, B2, ..., B6 , which may or may not available locally; if
not, we assume that actiongetTile((x, y)) can be executed to
get any available tiles〈(x, y), (x + m, y + n)〉.

The planning graph created by the planner is shown in Fig-
ure 3, where nodes represent lifted actions and arcs the sup-
porting relations. The dots inside action nodes are inputs and
outputs of the actions, each representing a set of objects, pos-
sibly infinite. At the time when a CSP is derived from this
planning graph, these unknown objects, inputs and outputs of
the actions and their parameters, are represented as variables
with infinite domains.

The action-based constraint propagation can be invoked
to restrict some of the infinite domains. Since the plan-
ner goal 〈(0, 0), (3, 2)〉 is known, the output of action
comp2v, which supports the goal, is also known; apply-
ing the propagation oncomp2v, we have the domains



comp2h

comp2h

comp2v

comp2v

comp2h comp2v

getTile

getTile

getTile

getTile

∞ ∞ ∞ ∞

∞ ∞ ∞∞

∞∞ ∞∞

B5 B6B4
B1 B3B2

Goal

Figure 3: A planning graph

of its two inputs, both of which are singletons, namely
{〈(0, 0), (3, 1)〉} and{〈(0, 1), (3, 2)〉}. Similarly, the output
of comp2his known; applying the propagation oncomp2h,
we have the domains of its two inputs, both of which
contain two regions: {〈(0, 0), (1, 2)〉 , 〈(0, 0), (2, 2)〉} and
, {〈(1, 0), (3, 2)〉 , 〈(2, 0), (3, 2)〉}, respectively. The changes
to inputs of the these actions are propagated to the next level
actions supporting them.

When propagation stops, we have a much more limited
search space as shown in Figure 4, where the tiles in the in-
puts and outputs are restricted to specified regions. These tiles
crossed out are the ones eliminated by propagation from the
initial state. Notice also that many links appearing in Figure
3 have been removed by the propagation. For example, all
links fromcomp2vto comp2vhave been removed.

We also have a goal constraint requiring the cloudiness
of the image to be at most 15%. Propagating this con-
straint backward through the graph results in the requirement
that each input image has a cloudiness of at most 15% (not
shown). However, the cloudiness of the tiles is unknown at
planning time, so no further propagation or pruning can be
done until the plan is at least partially executed. We continue
with this example in the next section.

5 Planning and Execution
Although our constraint-based approach to sensing helps to
cope with large, unknown domains, there is still some uncer-
tainty, even for a “complete” plan. Data products may turn
out to be of a lesser quality than expected, due to cloud cover
for instance, or may even turn out to be missing entirely. Pro-
cessing algorithms may fail to perform as well as expected,
perhaps due to problems with the input data, or they may
simply crash. Some quality problems can be automatically
detected, but only after the data products are in hand, meaning
after the plan has been at least partially executed. Fortunately,
the non-destructive nature of data production domains means
the cost of plan execution is limited to the time and resources
consumed, so it is natural to view plan execution as an ex-
tension of the search process. If partial execution of a plan
reveals a violation of a constraint or preference, it is a simple
matter to backtrack and try something else, since there are

comp2h

B5 B6B4
B1 B3B2

B5 B6
B3B2

B6
B3B1

B4 B5B4
B2B1

comp2v comp2h

comp2v

comp2hcomp2v

B2 B3

B3

B5
B2

B5 B6

B6
B3
B6

B1

B1 B2

B4
B1

B4

B4 B5

B5
B2

B5B4

B6

B4

B6B5

B2B1

B3

B1

B2 B3

B2B1 B3
B6B4 B5

B3B2B1 B4 B5 B6

B2B1

B4 B5 B6

B3B2

B5

B6B4 B5

B1 B3 B2B1
B5
B2

Goal

Figure 4: Constraint propagation in the planning graph. Ob-
jects in a dotted rectangles are inputs to an action; an object
divided by dashed line is a composed object; single objects
are available in the initial state or can be obtained withget-
Tile (not shown).

Algorithm 2 Plan construction and execution. Iteratively
supports subgoals and executes actions until all goals are sup-
ported and all actions are executed. The keywordpick indi-
cates a choice that is not a backtrack point. The keyword
chooseindicates nondeterministic choice (backtrack point)
The keywordfail indicates a backtrack.
public void PlanAndExecute(goal, actions)

1. let G← BuildPlanGraph(goal, actions)

2. let P ←BuildConstraintNet(G), A← Actions inG

3. let agenda← {goal}, unexecuted← {goal}

4. setd(goal)← {true}
5. while (propagate(G, A, P,A) returns false)

if (ExpandGraph(G, P ) returns false)fail

6. while (unexecuted6= ∅) pick

(a) pick α ∈unexecuted
if (execute(α) returns true)
removeα from unexecuted

(b) let p← remove from agenda
i. choose

〈
αs, γ

αs
p , p, αp

〉
in G

ii. addγαs
p to agenda and setd(γαs

p ) = {true}
iii. add αs to unexecuted
iv. if (propagate(G, A, P, {αs, αp}) returns false)

fail
(c) ExpandGraph(G, P )



comp2h

B5 B6B4
B1 B3B2

B5 B6
B3B2

B6
B3B1

B4 B5B4
B2B1

comp2h

comp2v

B3

B5
B2

B6
B3
B6

B1

B4
B1

B4B5
B2

B6B4 B5

B1 B3 B2B1
B5
B2

comp2v

Goal State

B1 B3
B6B4 B5

B1 B3 B6B4

Figure 5: Partial execution provides additional information,
which allows additional constraint propagation and pruning
of the planning graph.

no state changes to be undone. Furthermore, actions may be
executed before the plan is complete, yielding information to
reduce search or choose between competing options. For ex-
ample, if there are two candidate data sets, each of unknown
quality and each of which requires different processing steps,
the planner can execute the actions to obtain both sets of data
and decide which one to use before wasting time planning out
all the processing operations for data that may not be used.

Here, again, the planning graph representation is useful,
because it provides a guide to which data sources and actions
are relevant to a problem without requiring a complete plan to
be generated. Once an action has been executed and its out-
puts produced, the output variables are instantiated with the
results from execution and the constraints are re-propagated,
which may further restrict the domains of other variables, re-
ducing the amount of search.

5.1 Example
To continue our previous example, suppose that we execute
all the getTile actions in the planning graph before doing any
explicit search. Since getTile obtains the actual images, con-
straint propagation will result in determining the cloudiness
of each of the images. Recall that the domain for each cloudi-
ness variable was[0 . . . 0.15], since the maximum allowable
cloudiness specified in the goal is 0.15,. During propagation,
the actual cloudiness of each tile will be determined and in-
tersected with the original domain of[0 . . . 0.15]. If the value
is greater than 0.15, the domain will become empty. Suppose
the tile spanning B1 and B2 has cloudiness of 0.25, and all
the others have cloudiness of 0.0. This result is propagated
through the action graph, eliminating a number of values and
two actions (Figure 5).

6 Conclusions
IMAGEbot is implemented and has been integrated into
an ecological forecasting application[Goldenet al., 2003],
which produces “nowcasts” and forecasts of socioeconomic
importance, such as crop health and fire risk.

We believe the constraint-based sensing and planning-
graph propagation approaches introduced in this paper would
be equally suitable to other software domains that involve
large, unknown dynamic domains. Related applications to
which planners have been applied include Internet softbots
[Golden, 1998; Etzioni, Golden, & Weld, 1997], web ser-
vices[Srivastava & Kholer, 2003], image processing[Lansky,
1998; Chienet al., 1997], and grid-based computing[Blythe
et al., 2003].

References
[Bessiere & Ch, 1997] Bessiere, C., and Ch, J. 1997. Arc-

consistency for general constraint networks: Preliminary results.
In Proceedings of IJCAI-97, 398–404.

[Blum & Furst, 1997] Blum, A., and Furst, M. 1997. Fast planning
through planning graph analysis.J. Artificial Intelligence90(1–
2):281–300.

[Blytheet al., 2003] Blythe, J.; Deelman, E.; Gil, Y.; Kesselman,
C.; Agarwal, A.; Mehta, G.; and Vahi, K. 2003. The role of plan-
ning in grid computing. InProc. 13th Intl. Conf. on Automated
Planning and Scheduling (ICAPS).

[Chienet al., 1997] Chien, S.; Fisher, F.; Lo, E.; Mortensen, H.;
and Greeley, R. 1997. Using artificial intelligence planning to
automate science data analysis for large image database. InProc.
1997 Conference on Knowledge Discovery and Data Mining.

[Etzioni, Golden, & Weld, 1997] Etzioni, O.; Golden, K.; and
Weld, D. 1997. Sound and efficient closed-world reasoning for
planning.J. Artificial Intelligence89(1–2):113–148.

[Golden & Frank, 2002] Golden, K., and Frank, J. 2002. Universal
quantification in a constraint-based planner. InProc. 6th Intl.
Conf. Automated Planning Systems.

[Golden & Weld, 1996] Golden, K., and Weld, D. 1996. Repre-
senting sensing actions: The middle ground revisited. InProc.
5th Int. Conf. Principles of Knowledge Representation and Rea-
soning, 174–185.

[Goldenet al., 2003] Golden, K.; Pang, W.; Nemani, R.; and
Votava, P. 2003. Automating the processing of earth observa-
tion data. InInternational Symposium on Artificial Intelligence,
Robotics and Automation for Space.

[Golden, 1998] Golden, K. 1998. Leap before you look: Informa-
tion gathering in the PUCCINI planner. InProc. 4th Intl. Conf.
AI Planning Systems.

[Golden, 2002] Golden, K. 2002. DPADL: An action language for
data processing domains. InProceedings of the 3rd NASA Intl.
Planning and Scheduling workshop, 28–33. to appear.

[Katsirelos & Bacchus, 2001] Katsirelos, G., and Bacchus, F. 2001.
GAC on conjunctions of constraints. InProceedings of CP-2001.

[Lansky, 1998] Lansky, A. 1998. Localized planning with action-
based constraints.Artificial Intelligence98(1–2):49–136.

[Penberthy & Weld, 1992] Penberthy, J., and Weld, D. 1992.
UCPOP: A sound, complete, partial order planner for ADL. In
Proc. 3rd Int. Conf. Principles of Knowledge Representation and
Reasoning, 103–114.

[Srivastava & Kholer, 2003] Srivastava, B., and Kholer, J. 2003.
Web service composition - current solutions and open problems.
In ICAPS 2003 Workshop on Planning for Web Services. avail-
able at http://www.isi.edu/info-agents/workshops/icaps2003-
p4ws/program.html.


